parameter efficient fine-tuning

scroll ↓ to Resources

Contents

  • Note
    • [[#Note#Adapters|Adapters]]
    • [[#Note#LoRA|LoRA]]
    • [[#Note#Prompt Tuning|Prompt Tuning]]
    • [[#Note#Activation scalers|Activation scalers]]
    • [[#Note#bias-only|bias-only]]
    • [[#Note#Sparse weight deltas|Sparse weight deltas]]
  • Resources

Note

Methods

Adapters

LoRA

Transclude of LoRA#note

Prompt Tuning

  • Learn extra embeddings, virtual tokens, instead of inserting new subnetworks.

Activation scalers

  • Add three scaling vectors per layer

bias-only

  • Fine-tune existing bias terms. No new parameters are inserted.

Sparse weight deltas

  • Learn a sparse mask of weight differences on top of the frozen weights.

Resources


Transclude of base---related.base


table file.inlinks, filter(file.outlinks, (x) => !contains(string(x), ".jpg") AND !contains(string(x), ".pdf") AND !contains(string(x), ".png")) as "Outlinks" from [[]] and !outgoing([[]])  AND -"Changelog"